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Abstract: 
This paper describes the development of a set of software tools useful for 
analyzing ultra-wideband (UWB) antennas and structures.  These tools are used to 
perform finite difference time domain (FDTD) simulation of a conical antenna 
with continuous wave (CW) and UWB pulsed excitations.  The antenna is analyzed 
using spherical coordinate-based FDTD equations that are derived from first 
principles.  The simulation results for CW excitation are compared to simulation 
and measured results from published sources; the results for UWB excitation are 
new. 
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NIST - National Institute of Standards and Technology 
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SPICE - Simulation Program with Integrated Circuit Emphasis 
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Introduction 
In support of ongoing communication work in UWB at Sandia National Laboratories, efforts at 
building UWB antennas have been undertaken in the recent past with only a modicum of 
success.  This was done because of a pressing need for an adequate UWB antenna, and because it 
is impossible to buy a high performance UWB antenna, as of this writing.  The primary purpose 
of this work is to provide a thorough understanding of one high performance UWB antenna to 
aid in Sandia’s ongoing communication work.  
 
It was recently pointed out by Andrews that “there are almost no companies selling commercial 
UWB antennas” [1].  He also mentions that “a very important but frequently overlooked concept 
about UWB antennas is that the commonly accepted principle of antenna transmit-receive 
reciprocity does not exactly hold true for their time domain performance.”  As a result, the 
proper transmission and reception of UWB signals is difficult.  To confront half of this problem, 
the conical antenna is recommended by NIST for transmission of UWB signals [2].  The 
apparent difficulties of transmitting and receiving UWB signals pose a simulation problem that is 
perhaps best solved by a time domain technique.  Simulation results using the FDTD method for 
the conical antenna were found for CW excitation [3].  Simulation plots have not been published 
for the case of FCC-compatible UWB pulse excitation, though a large body of literature exists 
for this antenna.  
 
The second motivation for this work is to develop general-purpose software tools for analyzing 
antennas in the UWB operating regime.  For the conical antenna, these tools require the 
development of propagation equations for solving problems with spherical symmetry in FDTD.  
A number of papers have been written on the problem of FDTD in spherical coordinates [4] [5].  
The most comprehensive work on this was done by Holland [6].  However, in spite of a 
reasonable basis of work establishing the capabilities of FDTD in spherical coordinates, complex 
spherically symmetric propagation problems continue to be conducted in FDTD using 
rectangular coordinates.  Hertel and Smith recently reported on the FDTD analysis of a complex 
conical spiral antenna using rectangular coordinates [7].  As a result, the antenna geometry was 
discretized with a jagged appearance.  The antenna design lends itself to working in spherical 
coordinates, but the authors chose to work in rectangular coordinates.  So, the second objective 
of this work is to develop a complete set of software tools for the spherical FDTD, perfectly 
matched layer (PML), and wave generation equations.  This has been done by deriving these 
equations from first principles wherever possible, and by testing these equations and comparing 
the simulation results with published results. 
 
This work will describe the geometry of the conical antenna problem, will cover the derivation of 
the necessary 3-D and 2-D FDTD and PML equations and the UWB wave generation equations, 
and will test these equations using the conical antenna geometry.  The conical antenna FDTD 
results for CW excitation will be compared to reported simulation results and related closed form 
solution results.  The FDTD results for UWB pulse excitation will be compared to reported 
measurement results. 
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Conical Antenna Geometry and Simulation Parameters 
The conical antenna geometry is shown in figure 1.  It consists of a conductor that extends from 
the origin radially out at an angle θo for a distance of Rantenna.  The angle θo and the length of the 
antenna affect both the antenna radiation pattern and the input impedance of the antenna.  The 
top of the antenna consists of a conductor that follows the sweep of the θ axis at a constant 
distance, Rantenna, from the origin.  The antenna sits on top of a perfectly conducting ground plane 
that extends 360o in all directions for a distance of Rmax.  Just before the maximum radial 
distance, Rmax, is reached, the problem space is terminated in a PML section of thickness Npml.  
 

he FCC mandated band for UWB transmission is 3.1-10.6 GHz [8].  This means that the 

he nominal or center frequency of a UWB pulse is about 6.5 GHz; the nominal wavelength is 
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Figure 1: Conical antenna geometry
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T
maximum frequency of operation of a UWB antenna must be 10.6 GHz.  For choice of the 
minimum time and spatial steps and to enable convergence of the FDTD algorithm, 10.6 GHz is 
considered the frequency of operation.  The minimum wavelength, λmin, is therefore given by 
λmin = c/fmin = c/10.6GHz = 28mm.  The minimum radial step is taken to be about one tenth of 
this minimum wavelength, δr = λmin/10 = 3 mm, and δθ = 1o was also chosen. 
 
T
then λnom = c/fnom = c/6.5GHz ≈ 45mm=15δr.  The antenna dimensions are taken from the 
nominal frequency.  The antenna length for most calculations is taken to be about 1λnom, or about 
10δr  = 45 mm.  The simulation space, defined radially by Rmax, is taken to be Rmax=10λnom= 4.5 
cm.  Both antenna length and semi-angle, θo, are varied in a series of simulations to enable 
analysis of input impedance for varying conditions. 
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The problem can be reduced to a two dimensional simulation and can be further cut in half  
(figure2).  The reduction from three to two dimensions can be accomplished, since the antenna 
and its solution are symmetric in φ.  The cutting in half of the two dimensional problem can be 
done by splitting the solution space along the z-axis.  The solution space is terminated by a 
perfectly conducting ground plane on the bottom and by an absorbing PML layer starting at Rmax 
– Npml and extending to Rmax.  The PML layer absorbs the outward traveling waves and provides 
a means of stopping them with a minimal amount of reflection. 
 
 
 

 coaxial input signal line feeds the base of the antenna.  The output of the coaxial line and the 

and b = 2δr.  This gives an initiating wave front represented by 90 points from the δθ steps. 

Figure 2: Conical Antenna Simulation Space
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A
base of the antenna are taken to be the origin or the spherical solution space.  The UWB signal is 
input to the antenna as a voltage across the coaxial line from the inner to the outer conductor.  As 
will be elaborated on in another section, the coaxial input signal produces a spherical wavefront 
that propagates up the antenna and radiates out into space.  The dimensions of the coaxial feed 
line are shown in an insert in figure 2.  The inner (signal) conductor has a diameter ‘a’ and the 
outer (ground) conductor is at a distance ‘b’ from the inner conductor edge.  These dimensions 
are close to values obtained from a standard SMA-type connector and were chosen so that a = δr 
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Derivation of Spherical FDTD Equations 
To derive the field equations for E and H, one must start with two of Maxwell’s equations and 

 

e ins two vector versions of Maxwell’s equations: 

the medium dependent equations as follows: 
 
1)  ∇ x E = -δB/δt - Jm 
 
2)  ∇ x H = δD/δt + Je
 
3)  B = µ H 
 
4)  D = ε E 
 
5)  Je = σ E 
 
6)  Jm = σ* M
 
Combining th se, one obta

7)  t
HE

δ
µσ Hδ

v
vv

⋅−⋅−=×∇ *
 

8)  t
EEH
δ
δεσ
v

vv
⋅+⋅=×∇  

These two ve
 

ctor equations can be expanded using the spherical ∇ operator: 

9)            φ
δφ
δ

θδθ
θδ

δ
δ vvv ⋅⋅+⋅⋅+⋅=∇

11r
⋅ sinrrr  

r, φ being the spherical unit vectors.  These are applied using the following forms: 
 
with θ, and 

 

∇ x E = 

r θ φ

Er Eθ Eφ

∇ x H = 

r θ φ

Hr Hθ Hφ

and

10)

11)

⋅
⋅ θsin

1
r

⋅
⋅ θsin

1
r

( )θsin⋅
∂
∂ r
r

( )θsin⋅
∂
∂ r
r

( )θ
θ

sin
∂
∂

( )θ
θ

sin
∂
∂

φ∂
∂

φ∂
∂
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These two cross products each produce a vector equation which is another way of writing 

2)   -µ δH/δt =  σ*H + ∇ x E    or, expanding… 

3)   -µ δH/δt = 1/(r sinθ) ((δ/δθ (sinθ Eφ) - δEθ/δφ) r  + (δEr/δφ - sinθ δ/δr (r Eφ)) θ  

4)   ε δE/δt =   -σ E + ∇ x E    or, expanding…   

5)   ε δE/δt = 1/(r sinθ) ((δ/δθ (sinθ Hφ) - δHθ/δφ) r  + (δHr/δφ - sinθ δ/δr (r Hφ)) θ  

he vector equations (13) and (15) produce six scalar Maxwell’s equations from equating the r, 

6)   δHr/δt = 1/µ (δEθ/(r sinθ δφ) – 1/ (sinθ) δ/(r δθ) (sinθ Eφ)) + (σ*/µ) Hr  

7)   δHθ/δt = 1/µ (1/r δ/δr (r Eφ) - δEr/(r sinθ δφ) + (σ*/µ) Hθ  

8)   δHφ/δt = 1/µ (1/(sinθ) δ/(r δθ) (sinθ Er) – 1/r δ/δr (r Eθ)) + (σ*/µ) Hφ  

9)   δEr/δt = 1/ε (1/(sinθ )δ/(r δθ) (sinθ Hφ) - δHθ/(r sinθ δφ)) – (σ / ε) Er

0)   δEθ/δt = 1/ε  (δHr/(r sinθ δφ) – 1/r δ/δr (r Hφ)) – (σ / ε) Eθ

1)   δEφ/δt = 1/ε (1/r δ/δr (r Hθ) – 1/(sinθ )δ/(r δθ) (sinθ Hr)) – (σ / ε) Eφ

hese six scalar equations (16)-(21) must be converted into six FDTD equations to enable 

22) 

equations 10 and 11: 
 
1
 
1
                                   + (sinθ δ/δr (r Eθ) – δ/δθ (sinθ Er)) φ ) + σ*H 
 
1
 
1
                        + (sinθ δ/δr (r Hθ) – δ/δθ (sinθ Hr)) φ )  - σ E 
 
T
θ, and φ vector terms each into a separate scalar equation: 
 
1
 
1
 
1
 
1
 
2
 
2
 
T
iterative time-stepping.  The FDTD equations are found by referring to the unit cell diagram 
(fig.3) and using the following spherical, central finite difference equations: 
 

( ) ( ) ( ) ( )2
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⎥
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∂
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    ….. for time derivatives 

 

23) ( )
( ) ( ) ( )2

,,2
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⎥
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⎢
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−−+
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 ….  for elevation derivatives 
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25) ( ) ( )
( ) ( )

( ) ( )2

sin
2

1,,2
1,,

,,
sin

φ
φθφθ

∂+
⎥
⎥

⎦
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       ….  for azimuthal derivatives 
 
 

Figure 3 
 

eneral 3-D Spherical FDTD Equations 
 six scalar Maxwell’s equations and referring to the 

6)    Hr  (i, j+½, k+½) = [1 + δt σ (i, j+½, k+½) /µ(i, j+½, k+½)] Hr  (i, j+½, k+½)  

7)    Hθ
n+1/2 (i+½, j, k+½) = [1 + δt σ*(i+½, j, k+½) /µ(i+½, j, k+½)] Hθ

n-1/2 (i+½, j, k+½)  

(i, j, k)

(i+1,j,k)

(r, θ, φ) = (i*r, j*θ, k*φ) 

θ

r

φ

(i,j+1,k) (i,j+1,k+1)

(i+1,j,k+1)

(i+1,j+1,k+1)(i+1,j+1,k)

(i,j,k+1)

Er

Er

Er

Er

Eθ

Eθ

Eθ

Eθ

Eφ

Eφ

Eφ

Eφ

Hr

Hr
Hφ

Hφ

Hθ

Hθ

3-D FDTD Lattice Unit Cell in Spherical Coordinates 

G
Using the finite difference equations in the
unit cell diagram gives the following six finite difference equations in spherical coordinates: 
 

n+1/2 * n-1/22
           + δt/µ(i, j+½, k+½) * [{Eθ

n(i, j+½, k+1) - Eθ
n(i, j+½, k)}/(iδr δφsin((j+½)δθ))  

         – {sin((j+1)δθ)/sin(jδθ)Eφ
n (i, j+1, k+½) - Eφ

n (i, j, k+½)}/ (iδr δθ)].  
 
 
 
2

 12



            + δt/µ(i+½, j, k+½) * [{(i+1) Eφ
n(i+1, j, k+½) –  i Eφ

n(i, j, k+½)}/ iδr  
            - {Er

n (i+½, j, k+1) – Er
n (i+½, j, k)}/((i+½)δr δφsin((j+½)δθ))].  

 
n+1/ * n-1/228)     Hφ

2(i+½, j+½, k) = [1 + δt σ (i+½, j+½, k) /µ(i+½, j+½, k)] Hφ (i+½, j+½, k)  
) 

9)    Er  (i+½, j, k) = [1 - δt σ(i+½, j, k) /ε(i+½, j, k)] Er
n (i+½, j, k) + δt/ε(i+½, j, k) * 

 
0)    Eθ (i, j+½, k)  = [1 - δt σ(i, j+½, k) /ε(i, j+½, k)] Eθ (i, j+½, k) + δt/ε(i, j+½, k) * 

]. 
 

1)     Eφ (i, j, k+½) = [1 - δt σ(i, j, k+½) /ε(i, j, k+½)] Eφ (i, j, k+½) + δt/ε(i, j, k+½)  * 

}/ (iδr δθ)]. 

quations (26)-(31) are in the traditional Yee form, using half steps for all time and spatial steps.  

2)  33) 

4)  35) 

pplying the 2) half steps to whole steps for 

6)    Hr  (i, j, k) = Da Hr
n-1/2 (i, j, k) + Db [{Eθ

n(i, j+1, k) - Eθ
n(i, j, k)}/(iδφsin((j+½)δθ))  

+ δt/µ(i+½, j+½, k)  * [{sin((j+1)δθ)/sin(jδθ)Er
n (i+½, j+1, k) – Er

n (i+½, j, k)}/((i+½)δr δθ
            - {(i+1) Eθ

n(i+1, j+½, k) –  i Eθ
n(i, j+½, k)}/ iδr]. 

 
n+12

      [{sin((j+½)δθ)/sin((j-½)δθ) Hφ
n+1/2 (i+½, j+½, k) – Hφ

n+1/2 (i+½, j-½, k)}/((i+½)δr δθ) 
- {Hθ

n+1/2 (i+½, j, k+½)  – Hθ
n+1/2 (i+½, j, k-½)}/((i+½)δr δφ sin(jδθ))] . 

3 n+1 n

        [{Hr
n+1/2 (i, j+½, k+½)  - Hr

n+1/2 (i, j+½, k-½) }/(iδr δφsin((j+½)δθ)) 
-     {(i+½) Hφ

n+1/2(i+½, j+½, k)  –  (i-½) Hφ
n+1/2(i-½, j+½, k)}/ (i-½)δr

n+1 n3
         [{(i+½) Hθ

n+1/2 (i+½, j, k+½)  –  (i-½) Hθ
n+1/2 (i-½, j, k+½) }/ (i-½)δr  

      – {sin((j+½)δθ)/sin((j-½)δθ) Hr
n+1/2 (i, j+½, k+½)  - Hr

n+1/2 (i, j-½, k+½) 
 
E
In order to both use these equations in a simulation and compare the results to published 
equations, they need to be simplified and re-arranged.  First, the equations can be simplified with 
the use of some replacement coefficients.   The following, simplifying coefficients are applied in 
a manner similar to that given in [9]: 
 
3
 
 
 
 
 
3
 
 
 
 
 
A coefficients in (3 -(35) and converting the spatial 
matrix indexing gives the following 3-D spherical FDTD equations.  Half time steps and spatial 
steps that are not used for matrix indexing are kept since these can be implemented in the 
simulation. 
 

n+1/23
            – {sin((j+1)δθ)/sin(jδθ)Eφ

n (i, j+1, k) - Eφ
n (i, j, k)}/ (iδθ)].  

 

ε
δσ
ε
δσ

⋅
⋅

+

⋅

2
1 t

t

a

⋅
−

=
2

1
C

ε
δσ

δε
δ

⋅
⋅

+
2

1 t

t

b
⋅= rC

µ
δσ

δσ

⋅
⋅

+

⋅

=

2
1

*

*

t

t

Da
µ⋅

−
2

1

µ
δσ

δµ
δ

⋅
⋅

+
=

2
1

* t

t

Db
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37)    Hθ
n+1/2 (i, j, k) = Da Hθ

n-1/2 (i, j, k) + Db [{((i+1)/i) Eφ
n(i+1, j, k) –  Eφ

n(i, j, k)  

8)     Hφ
2(i, j, k) = Da Hφ

n-1/2(i, j, k) + Db [{sin((j+1)δθ)/sin(jδθ)Er  (i, j+1, k)  

9)     Er (i, j, k) = Ca Er  (i, j, k)  
) Hφ

n+1/2 (i, j, k) – Hφ
n+1/2 (i, j-1, k)}/((i+½) δθ)  

0) Eθ
n+1(i, j, k) = Ca Eθ

n(i, j, k) + Cb [{Hr
n+1/2 (i, j, k)  - Hr

n+1/2 (i, j, k-1) }/(i δφsin((j+½)δθ)) 

 
1) Eφ

n+1(i, j, k) = Ca Eφ
n(i, j, k) + Cb [{((i+½)/(i-½)) Hθ

n+1/2 (i, j, k)  –  Hθ
n+1/2 (i-1, j, k) }  

quations (36)-(41) are the full 3-D spherical FDTD equations and are very similar to the 6 

DTD Equations for a Conical Antenna 
etric, so it can be reduced to a two dimensional 

42) 
 
 

3)   

            - {Er
n (i, j, k+1) – Er

n (i, j, k)}/((i+½) δφsin((j+½)δθ))].  
 

n+1/ n3
                     – Er

n (i, j, k)}/((i+½) δθ) - {(i+1)/i Eθ
n(i+1, j, k) –  Eθ

n(i, j, k)}]. 
 

n+1 n3
      + Cb [{sin((j+½)δθ)/sin((j-½)δθ
       - {Hθ

n+1/2 (i, j, k)  – Hθ
n+1/2 (i, j, k-1)}/((i+½) δφ sin(jδθ))] . 

 
4

   -  {(i+½)/(i-½) Hφ
n+1/2(i, j, k)  –  Hφ

n+1/2(i-1, j, k)}]. 

4
      – {sin((j+½)δθ)/sin((j-½)δθ) Hr

n+1/2 (i, j, k)  - Hr
n+1/2 (i, j-1, k) }/ (i δθ)]. 

 
E
spherical FDTD equations given by Holland [6].  There are slight differences between the way 
Holland implements time and spatial stepping.  He drops the half spatial steps throughout his 
equations.  The equations implemented in (36)-(41) convert the half steps to whole steps only as 
necessitated for matrix indexing.  The additional accuracy lost by Holland’s conversion of these 
terms is slight but may be noticeable in features that are small relative to the spatial steps.  
Experimentation with these equations demonstrated that there are situations near boundaries and 
the origin where these small inaccuracies can be noticeable. Also, equations (36)-(41) differ in 
that the sin((j+½)δθ)/sin((j-½)δθ) terms in the Eφ and Hφ field equations are kept but do not 
appear in equations (6) or (9) of [6].  Experimentation with the FDTD simulations revealed that 
these terms provide only a small variation to the field values.  In the simulation of the conical 
antenna, Hφ was found to change by less than 2% with the addition of the sin((j+½)δθ)/sin((j-
½)δθ) term.    
  
 
F
The conical antenna is rotationally symm
problem.  Using the rotational symmetry, the δ/δφ terms are zero, and the only field components 
that exist are Er, Eθ, and Hφ.  The six scalar Maxwell’s equations then reduce to the following 
three simplified equations: 
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44)   

 (42)-(44), as in the 3-D versions, the magnetic and electric conductivities are kept to enable 

 
pplying the central difference equations (22)-(25) to the 2-D spherical Maxwell’s equations in 

5)   
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θ

δ
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εδ
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rr
E

t
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In
computation of a PML layer at the periphery of the problem space.  These three scalar equations 
produce three FDTD equations in spherical coordinates.  

A
(42)-(44) gives the following equations, using the traditional half time step notations in all 
locations.  Here the coordinates for σ, µ, σ*, and ε are the same as for the field value on the left 
hand side of the equation: 
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Figure 4: Conical Antenna Coordinates 
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46)  

7)   

pplying the simplifying coefficients in (32)-(35) to equations 45-47 and eliminating the half 
atial steps

8)   

 
49)   
 
 
 
 
 
 

0)   

 (48)
n the left side of the equations.  These are the equations used in the FDTD simulation of the 
onical antenna.  They are almost identical to the 2-D FDTD equations used by Liu and Grimes 
].  The equations in [3] have at least one typographical error and appear to use values for I and 
that start are incremented by 1.  This is a standard Matlab requirement for matrix indexing, and 
 appe
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A
sp  in the matrix indexing gives the following, final 2-D FDTD equations: 
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In -(50) the coordinates for σ, µ, σ*, and ε are the same as the coordinates of the field value 
o
c
[3
J 
it ars that the equations shown in [3] are intended to use 1 as the origin.  The equations 
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shown in (48)-(50) use 0 as the origin, and the Matlab implementation of these equations must be 
cremented by 1 for all I and J.   

he base of the antenna is driven by a voltage signal through a coaxial line.  The coaxial line has 

ote that the θ units of this equation are different from the θ units of the spherical coordinates of 
is equation is subject to the boundary conditions V(a, θ) = V0 and V(b, θ) = 0.  In 

 has the general solution: 

he electric field of the incomi  is the gradient of this potential: 

5) 

pplying the spherical gradient operator gives: 

6) 

ith the E field being independent of ield across the input to the base of 
ave transforms from the 

ylindrical coordinate system of the coaxial line into the Eθ component driving the base of the 

in
 
Another small difference with the FDTD equations in [3] is the absence of the 
sin((j+½)δθ)/sin((j-½)δθ) term in the equation for Hφ.  This produces a only small difference to 
the simulated field values.  Its absence from the equations in [3] leads me to believe that its 
presence in (48) may be an error.  I convinced myself that it belongs in the equation only after 
going through the derivation for the equation three times. 
 
 
Driving Signal 
T
an inner conductor diameter “a” and an outer conductor diameter “b”.  The voltage on the 
coaxial line is a solution to the wave equation in cylindrical coordinates:  
 
51) 
 

011
2

2

2 =
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

θ
V

rr
Vr

rr

N
the antenna.  Th
actuality, V  will0  vary with time, but the time variation can be introduced once the static solution 
is found.  Since the coaxial line is axially symmetric, the solution is independent of θ.  The wave 
equation in cylindrical coordinates simplifies to: 
 
52) 01

=⎟
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⎜
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∂
∂

∂
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r
Vr

rr 
This
 
53) 
 
Applying the boundary conditions gives the final solution for the coaxial driving voltage: 
 
54) 

( ) DrCrV +⋅= ln),( θ

( )
( )a
b

b
ln

VE

rV
rV

ln
),(

0 ⋅
=θ

 
 
T ng wave
 

−∇=5
 
A
 
5 ( )a

br
V0Er
ln⋅

−=
 
 
W θ.  This is the electric f
the cone.  Here the radial component of electric field from this TEM w
c
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antenna in the spherical coordinate system in which the antenna is to be simulated.   This change 
 made by taking r = b sinθ in the source equation.  Then the driving electric field at the base of 

ere, Vs(t) is the time varying input volta  the voltage source, Rs is the impedance of the 
ge source (which is assumed to be matched to the coaxial line), and Iin(t) is the input current 

t the base of the antenna produced by the input voltage. The input current is given by Ramo, 
hinnery, and Van Duzer [10] as: 

he electric driving field, Eθ, resulting from the input voltage, Vin(t), is found by replacing the 
tant voltage, V0, from the sta  time varying voltage, Vin(t).   The 

riving electric field at the base of the antenna is then: 

 can be converted into an FD  drive the base of the symmetrically reduced 
tructure. 

 field is a sm of the coaxial line to 
e outer, grounded conductor, which forms part of the ground plane.  Then, as the voltage, Vs(t), 

teps forward in time it drives the base of the antenna with this spherical electric field.  The 

The input impedance of the antenna is given by the ratio of V (t) to I (t).  The input voltage is 

 
2)   

 

is
the antenna is: 
 

( )a
bb

V
E

lnsin
0

⋅⋅

−
=

θ
θ57) 

 
 
In accordance with the example set by Liu and Grimes [3], to reduce nonphysical reflections, the 
voltage seen by the antenna must take into consideration any impedance mismatch between the 
input line and the antenna.  This voltage seen by the antenna at its base is then given by:  
 
58) 
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H ge from
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a
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59) 
 

( ) φθπ HrIin ⋅⋅⋅⋅= sin2

T
cons tic solution (57) with the
d
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This TD equation to
s
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This all, spherical source extending from the inner conductor 
th
s
antenna radiates the resulting wave in accordance with the FDTD equations given in (48)-(50). 
 

in in
found from the driving field given by (61) by using the integral equation version of (55) across 
the base of the antenna: 

∫ ∂⋅=
2

0

π

θ
θ θEbVin

6
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The current, Iin(t), is found by averaging the current from (59) across the input to the antenna at 
its base.  The input impedance is then given by: 
 
63)  
 
This input impedance is 

in

in
in I

VZ =

calculated for each value of Rantenna and θ0 during the simulation and is 
ompared to theoretical and measur tion. 

erfectly Matched Layer (PML) Spherical Equations 
he artificially imposed boundary at the edge of the simulation space needs to terminate in an 

rbing boundary layer is spherically symmetric.  
hat is, the PML layer only needs  radius, r.  In order to form a PML, the 

ing steps must be taken [11] [12]: 
) Resolve Hφ into the Hφ  and Hφθ components in the coupled Maxwell equations. 

constants to include exponential 
ifference time advance [13]. 
) Calculate conductivity values for the PML layers using the matching condition. 

 

7)   

e fo into four FDTD equations using (22)-(25) in 
ccordance with the second step given above.  The results are as follows: 

c ed values in a later sec
 
 
P
T
absorbing layer to prevent spurious reflections from interfering with the outgoing wave.  Because 
the problem is in spherical coordinates, an abso
T to vary with the
follow
1 r
2) Create FDTD equations from the revised Maxwell equations. 
3) Modify the Ca, Cb, Da, and Db (equations 32-35) time 
d
4
 
Performing the first step involves splitting the magnetic field into one component due to r and 
one due to θ.  Starting with the Maxwell equations given in (42)-(44), and using a PML with 
electric and magnetic conductivities for r and θ respectively given by (σr, σr

*, σθ, σθ
* ): 
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Thes ur Maxwell’s equations can be converted 
a
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68)   

9)   

0)  
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T four equations can be simplified using the following definitions where x is replaced by ‘r’ 
o
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74)  75) 

hese are sim cept that the con it into their respective 
and θ components.  Using these simplifying coefficients, the PML iteration equations become: 
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…with Hφ = Hφθ + Hφr in (78) and (79). Next, a step recommended in [13] is attemp
involves converting to exponential time stepping in the PML region.  This is done to 
accommodate the rapid decrease in wave amplitude in the PML region.  Equations
hold in the PML region, but new constants must be calculated that take the rapid time
into consideration.  The new constants that arise from this approach are as follows: 
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80)    

3) 

mm -(79) are us ponents in the PML region 
ith coefficients given by either equations (72)-(75) or (80)-(83).  It was found that coefficients 
2)-(75) gave good PML performan l coefficients in (80)-(83) 

aused e rom the input edge of the PML region.   

erfectly Matched Layer (PML) Parameters: 
 order to implement the PML iteration equations calculated in the previous section, it is 

ecessar e conductivit each layer, from free space to 
ast PML layer, the impedance matching condition given by Berenger must be kept [11]: 

4) 

 layer forms a boundary in 
with θ being represented from 0 to 90 .  However, for completeness, the σθ and σθ

* terms can 
omputational overhead in the PML region.  

σN , 
nd the profile of conductivities for each layer, σm and σm

*.  The desired reflection for a 
ally incident wave is taken to be R(0).  Berenger gives the reflection factor for a wave at 

rbitrary angle of incidence, θ, as [12]: 
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ot be presented for lack of space.  For a linear conductivity profile, n =1, for a parabolic 
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In su ary, equations (76) ed to compute the field com
w
(7 ce, whereas use of the exponentia
c xcessive reflections f
 
P
In
n y to calculate th y profiles for each layer.  In 
the l
 
8
 
 
In this two dimensional problem, only σr and σr

* are really needed, as the outgoing spherical 
wave is expected to be normally incident on the outer layer.  The outer

o

µε
=
σσ *

r 
be kept, since they contribute little to additional c
 
The parameters that need to be calculated to compute the PML layer are the number of cells in 
the PML layer, N, the free space conductivities, σ0 and σ0

*, the final conductivities, σN and *

a
norm
a
 
85)  
 
The conductivity profile in the PML region can be linear, parabolic, or geometric.  All three 
methods were experimented with in this work, although results from all the different cases 

θθ cos)0()( RR =

n
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conductivity profile, n =2, and for a geometric profile, g=2-4, are used.  For a desired 
conductivity profile of thickness δ, the reflection factor R(0) is given by: 
 
86)   
 ( )

( ) ∫
=

∂⋅⋅−
δ

ρρσε0 )(2

0
c

R
 
Adapting the results of the ma (86) from [12] into spherical coordinates, so 

at δx is replaced by δr, the free space conductivity for the three different cases is given by 

sing equation (87) to calc ctivity of free space, the magnetic 
ctivity of free space can be calculated from equation (84).  The final layer conductivity is 

alculated from 
 Linear or parabolic    geometric 

he conductivity value for each layer, i, of the PML section of total thickness, δ, for i from 0 to 
hen g

 Linear or parabolic 

e given a desired 
flection factor, R(0), and number of layers, N.  As an example, for a reflection factor of 0.01 

0 la lic conductivity profile, som

Table 1: Conductivities for a 20 layer parabolic PML 

he correct pr d automatically in the prog r any desired reflection factor, 
umber of layers, and for either a linear, parabolic, or geometric conductivity profile.  Much 

 factors require 
igher free space conductivities to achieve the desired reflection factor.  High free space 
onducti

PML regio  either parabolic or 
geom
 

nipulation of equation 
th
  Linear or parabolic    geometric 
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88)   
 
T
N is t iven by 
    geometric 
 
89)  
 
 
Using equations 87-89 and 84, one can calculate the conductivity profil
re
with 2 yers in a parabo e of the conductivities are: 
 
 

 
 

 
T ofile is calculate ram fo
n
lower reflection factors than 0.01 were typically used for parabolic or geometric profiles, as the 
lower reflection factor leads to a much higher final conductivity but only slightly higher free 
space conductivity.   Thinner PML layers or linear layers with high reflection
h
c vity leads to undesirable wave attenuation in the propagation region.  To avoid this, 

ns with fairly large numbers of layers were used and with
etric conductivity profiles.   

( ) nn
oN Nn ⋅⋅+⋅= +121σσ ( )gg

gg N
N ln

1
0 ⋅

−
⋅⋅= σσ

n

Ni
i
⎟
⎠
⎞

⎜
⎝
⎛⋅=
δ

σσ Ni
Ni g −⋅= σσ

Conductivity type layer 0 layer 1 layer 2 layer 10 layer 19 layer 20
electric 3.20E-05 0.0008 0.0069 0.0763 0.2756 0.3054
magnetic 4.52 109 434 10851 39171 43403
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Some layer conductivities for a geometric conductivity profile with 20 layers and the same 

ion testing were very good.  Either a parabolic or a geometric 
rofile gave adequate performance to enable antenna evaluation.  The performance of the PML 

ation effect that arises from the stepping of the layer 
onductivities.  The results from both CW and Gaussian pulse excitation are shown in a separate 
ction o

onvergence Criteria 
There ar scribed 

 [14].  The first is that the boundary of the computational space must be sufficiently far from 

sing the already cho δt(max) = 0.35 psec.  As an 

reflection factor are shown in table 2: 
 
 
 
 

Table 2: Some conductivities for a 20 layer geometric conductivity profile PML 
 
Note the much lower free space and higher final layer conductivities for the geometric profile.  
The results from the PML simulat

Conductivity type layer 0 layer 1 layer 2 layer 10 layer 19 layer 20
electric 1.85E-12 1.10E-11 4.40E-11 2.90E-06 0.76 3.05
magnetic 2.63E-07 1.57E-06 6.30E-06 0.414 10851 434030

p
to a narrowband CW signal was found to be better than to the wideband UWB signal.  It is 
believed that this is due to a discretiz
c
se f the appendix entitled, FDTD Simulation Results: PML Effectiveness.     
 
C

e three general convergence criteria that the FDTD algorithm must satisfy, as de
in
the surface of a scatterer in accordance with the requirements of the particular radiation boundary 
condition used.   In the case of the PML boundary, fairly close terminations are tolerable, so the 
10λnom distance used for this problem is probably much more than is needed.  The second 
criterion is that the cell sides must not be longer than 0.1λmin.  As was described in the section on 
antenna geometry, the choice for δr satisfies this criterion.  The third criterion is that the time 
step must not exceed a certain minimum determined by the cell dimensions.  The coordinate 
invariant stability condition for the time step in two dimensions is given by [14]: 
 

24

90) 
 
In the spherical coordinates used for this problem, the minimum cell dimensions occur at the 
spatial step closest to the origin.  Since the coaxial line feeds a spherical wave at the r = 2δr 
position (the origin is at the base of the antenna and is not part of the iteration), the minimum cell 
dimensions occur between r = 2δr and r = 3δr.  For these cells, the minimum time step criterion 
is the most critical.  Using (90) for these minimum cells one obtains: 
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U sen values for δr and δθ, one obtains, 
additional check, the value for the minimum time step for the farthest cells in the simulation is 
given by: 
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For the farthest cells where r =150δr, δr(max) = 9.3 psec.  The minimum time step for the 

allest cell will be sufficient for all other cells, also. 

losed Form Simulations 
sed form solution exists f nical antenna and is given in [10].  This closed 

rm solution is for steady state, rather than transient, voltage excitations, and it is for an infinite, 
ther than a finite, antenna.  Nevertheless, the closed form solution can provide a benchmark 

3)  

he equations for Eθ and Hφ appear with two different propagating wave terms.  The first term 
sents a wave that is tra eling radially outward with the velocity of light, and the second 

rm represents a wave that is traveling radially inward with the same velocity.   There is no field 
onent in the radial di of the wave.  The 

ntenna input impedance for an infinite cone antenna over a ground plane with semi-angle θo is 
iven as [1] [10] 

6)  

rom spherical to otted in figures 4 and 5 from 
o different angles.  The printed plots appear somewhat choppy due to discretization that is not 

nt in the images when seen on a computer monitor.  The image is a 3-D projection of a 2-D 
ross section of the Eθ field.  Two different angular views are shown for clarity.  The closed form 
φ field component differs from the Eθ field only in magnitude and is not shown.  

.0=rE

sm
 
 
Results 
C
A clo or an infinite bico
fo
ra
against which to compare the FDTD results, for steady state excitation.  The three closed form 
field components in free space are given as [10]: 
 
9
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A MATLAB simulation entitled, IdealCone.m, was run to display the real portion of the outward 
traveling wave component for both Eθ and Hφ.  The code for the simulation is included in the 
software appendix.  The parameters of the simulation such as δr and δθ are the same as are used 
in the FDTD simulations.  The antenna cone angle was chosen as 30o.  The simulation results 

ere converted f

π⋅2

θη ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
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Figure 5: E-field for infinite cone antenna, closed form solution. 

 
Figure 6: 2-D view of E-field for infinite cone antenna, closed form solution 
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FDTD Simulation Results, CW Excitation 
The FDTD simulation was written in MATLAB and is called FDTD1.m.  This simulation uses 
the equations and parameters generated in the previous sections.  It is written as a MATLAB 
function that is callable from the command line with a number of time steps as an input 
parameter.  To compare results with the closed form simulations, an FDTD simulation with a 
steady state voltage source was used for the results shown in figures 7 and 8. 
 
The closed form results in figures 5 and 6 compare well both qualitatively and quantitatively to 
the FDTD results in figures 7 and 8.  The FDTD results terminate about 1λnom before the outer 
edge of the simulation space due to the rapid attenuation of the PML layer used here.   The scales 
in the two sets of figures are slightly different, but it can be seen that in both sets of figures the 
amplitude changes from about 0.2v/m about 1λnom from the base of the antenna to about 0.05v/m 
about 8λnom from the base.  Both sets of images exhibit some apparent variation in θ that is a 
result of the conversion to Cartesian coordinates from spherical coordinates for plotting.  These 
variations exist as visual artifacts in the images, but are not present in the spherical data. 
 
The FDTD simulation was performed with an 8.2λnom tall antenna with a 30o degree semi-angle. 
Overall, the CW-FDTD simulation results compare very well to the theoretical results for an 
infinite antenna. 
 
 
 

 

Figure 7: Eθ-field for long cone antenna, FDTD solution. 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

 

 27



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

igure 9 shows a comparison of the far field radiation pattern from the FDTD simulation with 
W excitation (left side) against published far field data for a comparable antenna (right side) 

Figure 8: Eθ-field for long cone antenna, side view, FDTD solution. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Comparison of FDTD far field pattern (left) with published data (right) 
 
F
C
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[3].  The anten red the entire 
mulation space.  The simulation was run for 8000 steps with 0.2 psec/step.  The comparison 
as genera ce is 
ortly before the PML region begins to attenuate the outward traveling wave.  The Eθ field 
mulation data was collected as output from the FDTD1.m MATLAB routine.  The polar plot 
omparing the published data to the simulated data was generated using the MATLAB routine 
plot.m.  The simulated and measured data compare fairly well with the simulation, faithfully 
producing the field everywhere with only slightly lower levels in the 30-60o region. 

imulation Results: UWB Pulse Excitation 
he MATLAB simulation FDTD1.m can be run with a UWB pulse selected as the voltage drive 
gnal Vs(t) in equations (60) and (61).  The UWB pulse is modeled as a Gaussian-shaped 
nusoid of peak amplitude 0.7Vo.  It is described by 

7)  

here nstart determines the zero-phase point of the bipolar pulse, and ndecay determines the 1/e 
me constant of the pulse.  The simulation results of a short MATLAB program Vsrc.m to 
mulate this pulse and a cosine variant of it are shown in figure 10.  The cosine version is 
escribed by 
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Equation (97) describes a unipolar Gaussian-shaped UWB pulse and (98) describes a bipolar 
UWB pulse.  Both the sine and cosine versions of the UWB pulses described by (97) and (98) 
were used as excitation sources for the antenna in figure 1. 
  

 
Figure 10: Sine and cosine driven UWB pulses with fc=6.5GHz. 
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The sine version of the UWB pulse was used to drive the antenna in figure 11.  The Eθ field 
component after shows detailed 

ructure e of the 
finest va  spherical to 

voltage pulse into a 
bipolar Eθ  

cult UWB 
design problem Ω 
antenna and the 50
 
A separa tailed images 

ots give an 
effective vis nd its final 

e-
stepped m

 

The FDTD sim ta for variations in 
o -excitation 

F
own in table 3 in the fourth column, as compared with measured results in the fifth column, 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 11: 3-D view of 2-D Eθ Field from UWB pulse propagating out from the conical antenna 

 2.0 nsec (4000 time steps) is shown.  The FDTD simulation 
st of the wavefront as it advances radially out from the antenna, although som

riations in this image are artifacts arising from the conversion from
Cartesian coordinates for plotting.  The spiky appearance of the wave along the tops of the crests 
is due to the conversion artifacts.  The distortion of the unipolar UWB input 

 field pulse compares well with results from [17].  The ability to reproduce this kind of
wave distortion using FDTD analysis is a valuable benefit of this analysis for diffi

s.  In addition, some ringing from the impedance mismatch between the 74
Ω coaxial input line is visible in this image and in the images in the appendix. 

te section of time-lapsed images in included in the appendix providing de
of the propagation of a Gaussian-shaped pulse from the conical antenna. These pl

ual review of the propagation of the wave, its far-field characteristics, a
absorption in the PML region.  The MATLAB function Film.m was created to generate a tim

ovie of the UWB pulse as it propagates from the base of the antenna until it is 
absorbed in the PML layer. 

Impedance Simulation Results 
ulation was also used to compute antenna input impedance da

antenna semi-angle, θ , and height, a.  The impedance was computed during the CW
DTD simulation using equations (59) and (62)-(63).  The simulation-generated results are 

sh
theoretical results for an infinite antenna in the sixth column, and calculated results using varying 
antenna parameters in the seventh column. 
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Table 3: Antenna Impedance Simulation Results 
 

easured impedance data is

10 372 52 146 - 146 150
20 372 52 93 - 104 106
45 372 52 53 - 53 61
60 372 52 27 - 33 34

M  available from [3] which refers to [15] as the original source of the 
ta all exists for an antenna semi-angle of 30o and for varying 

 

8.2
corre
 

, 

sim
es of 

60o

reliable.  This is probab  currents and voltages.  
arge variations in impedance for small changes in sample time were found at these large angles.  

 
 

4 372 52 225 - 201 209

Antenna angle Antenna height (a) ka Zsimulated Zreported[3] Zinfinite[10] Zcalc[16]
(degrees) (mm) (dr = 3mm) (k = 0.14/mm) (ohms) (ohms) (ohms) (ohms)

30 372 52 73 - 79 80
30 45 6.3 73 74 - 85
30 33 4.6 73 72 - 70
30 24 3.25 72 70 - 79
30 15 2.1 77 91 - 100
30 9 1.3 58 50 - 49
30 6 0.85 32 22 - 29

measurements.  The measured da
antenna heights.  The tallest antenna for which measurement data is available is only about 
1λnom.  The simulated impedances correlate with the measured results very well, and only 
diverge significantly for very short antennas.  This is probably due to discretization-induced 
errors, as the antenna dimensions approach the dimensions of the unit cell. 
 
The theoretical impedance values included in the table are for an infinite, conical antenna [10] 
and [1].   The theoretical model is based on an infinite cone antenna over an infinite ground 
plane, and the impedance is calculated using equation (96).  The comparable simulation data was
obtained using an 8.2λnom tall antenna with varying antenna angles.  The antenna height of 

λnom is long relative to a wavelength but is not infinite.  The simulated impedances do 
late very well with the corresponding theoretical values, albeit for an infinite antenna. 

The calculated impedance values were obtained using a MathCAD worksheet, ConeAntZ.mcd
included in the appendix.  The methodology and equations used in this worksheet are described 
in [16].  The formulae used to calculate the impedances give results that agree fairly well with 
both the measured and the FDTD simulated values. The greatest discrepancies between the 

ulated and the calculated values occur for very short antennas.  Again, it may be possible to 
obtain better simulation accuracy using a smaller cell size for the smaller antennas.  For angl

 or more, the simulated impedances were found to be unpredictable and increasingly less 
ly due to phase differences between the simulated

L
Simulation results were most reliable for antenna heights of ½λnom or more and for antenna 
angles of 45o or less. 
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Three-dimensional plots of two-dimensional FDTD simulation results 
 
These plots are of FDTD simulation results for a 15mm tall conical antenna with a semi-angle of 
30o in a spherical field with an outer radius of 150mm.  The excitation waveform is a Gaussian-
shaped sinusoid centered around 6.5GHz.  These plots are of the Eθ field, converted back from 
the spherical simulation space into Cartesian coordinates for plotting.  The coordinate conversion 

rocess and plotting process can introduce some small-scale visual artifacts; otherwise, the data 

 clearly visible, 

p
is faithfully reproduced. 
 
1) Plot of simulation 
results after 1000 
time-steps (200 psec).  
The sine version of 
the Gaussian pulse 
used for excitation is 
starting to travel out 
from the base of the 
antenna. 
 
 
 
 
 
 
 
 
 
 
2) Plot of simulation 
results after 2000 
time-steps (400 psec).  
The conical cross-
section of the antenna 
is
surrounded by the 
wave excitation. 
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3) Plot of simulation results after 
000 time-steps (800 psec).  The 
ave is traveling away from the 

ntenna and starting to assume 
e far-field pattern shape. 

) Simulation results after 6000 
me-steps (1.2 nsec).  T
 still traveling spherically 
utward, as expected, with an 
mplitude distribution that has 
ssumed the far-field pattern.  
he main Gaussian pulse is 
llowed by some small ringing 

rising from the coaxial input 
e 

) Simulation results after 9000 
me-steps (1.8 nsec).  The 
aussian pulse has been entirely 

bsorbed by the PML region.  
he small remaining waves are 
e residual ringing and are not 
flected from the PML .   These 
aves are also absorbed by the 
ML region within another 
.2nsec, and the simulation space 
 left with no visible waves. 

4
w
a
th
 
 
 
 
 
 
 
 
 
 
 
4
ti he wave 
is
o
a
a
T
fo
a
line-antenna impedanc
mismatch. 
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FDTD Simulation Results: PML Effectiveness 
 
To assess the effectiveness of the PML region, a series of snapshots of the simulation space for 

oth CW and Gaussian pulse excitation are presented.  These images demonstrate that the PML 
chnique, as implemented, is adequately effective for absorbing both the narrowband CW signal 

nd the UWB signal.  The PML used here is a 20-layer thick region with parabolic conductivity 

sed here was a 20- 
yer parabolic 

stepped conductivity 
region. 

) FDTD simulation 
on 

fter the excitation 

  

L.  

due to 
 

match 
duced ringing. 

b
te
a
profile; it is less effective against th
 
CW Excitation 
 
1) FDTD simulation 
with CW excitation 
for 7000 time-steps 
(1.4nsec).  The wave 
has reached the PML 
and is about to be 
absorbed.  The PML 

e wideband signal than the CW signal. 

u
la

 
 
 
 
 
 
 
2
with CW excitati
a
source has been 
turned off, 12000 
time-steps (2.4nsec).
The tail end of the 
wave is about to be 
absorbed in the PM
The residual, small 
waves trailing the 
main waves are 
antenna/ input coaxial
line mis
in
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3) FDTD simulation with CW 
xcitation after the excitation 
urce has been turned off, and 

o
00 time-

aint wave at 
ency is still 

 due to a 
he PML 

on with UWB 
aussian shaped sinusoidal pulse 

xcitation.  This image is after 
000 time-steps, as the wave is 

 well 
on.  

wave. 

) FDTD simulation with UWB 
xcitation after 9000 time-steps 
.8nsec).  The wave has struck 

nd been mostly absorbed by the 
 region.  The 

igh frequency ringing is due to 

 

e
so
the wave has been abs
the PML region (160
steps, 3.2nsec).  A f
the 6.5GHz frequ
visible and is likely
small reflection from t
region.   
 
 
 
 
 
UWB Excitation 
 
1) FDTD simulati

rbed by 

G
e
4
traveling outward and
before it has hit the PML regi
Note the faint impression of the 
antenna in the center of the 
 
 
 
 
 
 
 
2
e
(1
a
20 layer thick PML
h
the coaxial input line mismatch, 
and the lower frequency signal is 
the UWB signal that has been 
reflected from the PML. 
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Conclusion 
Complete sets of spherical FDTD simulation equations were developed from first principles to 

overn electromagnetic wave generation, propagation, and absorption.  These equations were 
sed to simulate a conical antenna for CW excitation, Gaussian pulse excitation, and input 

pedance.  The simulation results were found to compare well to other published data, both 
easured and simulated. 

eferences 
S

pp. 3. 
, “Antennas and the Associated Time-Domain Range for the 
s”, Nat. Bur. of Stnds. Tech.l Note 1008, Boulder CO, Nov. 

“Spherical-Coordinate FDTD Analysis of Conical Antennas 
Planes”, Microwave and Opt. Tech. Let., vol. 23, no. 2, Oct. 

ree-Dimensional FDTD Algorithm in Curvilinear Coordinates”, 
Prop., vol. 39, no. 10, Oct, 1991, pp. 1463-1471. 

) F.L. Teixeira and W.C. Chew, “PML-FDTD in Cylindrical and Spherical Coordinates”, IEEE 
icrowave and Guided Wave Let., vol. 7, no. 9, Sep. 1997, pp 285-287. 

) R. Holland, “THREDS: A Finite Difference Time-Domain EMP Code in 3D Spherical 
oordinates”, IEEE Trans. on Nucl. Sci., vol. NS-30, no. 6, Dec. 1983, pp. 4592-4595. 

el and G.S. Smith, “Analysis and Design of Two-Arm Conical Spiral Antennas”, 
., vol. 44, no. 1, Feb. 2002, pp. 25-37. 

 Time 
omain Technique for Microstrip Antenna Applications,” unpublished manuscript, pp. 1-59. 

hinnery, and Van Duzer, Fields and Waves in Communication Electronics, John 

d Layer for the Absorption of Electromagnetic Waves,” 

tion Problems,” IEEE Transactions on Antennas and Propagation, vol 44, no. 1, Jan. 

ary Condition for FD-TD Meshes,” IEEE Microwave and Guided Wave 

s. On Ant. and Prop., 

Techniques,” McGraw-

overage”, 

g
u
im
m
 
R
1) J.R. Andrews, “UWB Signal 
Appl. Note, AN-14a, Aug. 2003, 
2) R. Lawton and A. Ondrejka
Measurement of Impulsive Field
1978. 
3) G. Liu and C.A. Grimes, 
Mounted Above Finite Ground 
1999, pp. 78-82. 
4) M.A. Fusco, et al, “A Th
IEEE Trans. on Ant. and 

ources, Antennas, and Propagation”, Picosecond Pulse Labs 

5
M
6
C
7) T.W. Hert
IEEE Trans. on Electromag. Compat
8) FCC 02-48, “Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband 
Transmission Systems”,  First Report and Order, Wash. D.C., adopted  Feb. 14, 2002, released 
April 22, 2002.  
9) A.Z. Elsherbeni, C.G. Christodoulou, and J. Gomez-Tagle, “The Finite Difference
D
10) Ramo, W
Wiley and Sons, 1965, p. 464. 
11) J.P. Berenger, “A Perfectly Matche
Journal of Computational Physics, no. 114, 1994, pp. 185-200. 
12) J.P. Berenger, “Perfectly Matched Layer for the FDTD Solution of Wave-Structure 
Interac
1996, pp. 110-117. 
13) D.S. Katz, et al, “Validation and Extension to Three Dimensions of the Berenger PML 
Absorbing Bound
Letters, vol. 4, no. 8, Aug. 1994, pp. 268-270. 
14) M. Fusco, “FDTD Algorithm in Curvilinear Coordinates”, IEEE Tran
vol. 38, no. 1, Jan. 1990, pp. 76-89. 
15) Harvard Radio Research Laboratory Staff, “Very High Frequency 
Hill, New York and London, 1947, vol. 1, pp. 102-110. 
16) S.S. Sandler and R.W.P. King, “Compact Conical Antennas for Wide-Band C
IEEE Trans. on Ant. and Prop., vol. 47, no. 3, Mar. 1994, pp. 436-439. 

 36



17) J.G. Maloney, G.S. Smith, and W.R. Scott, “Accurate Computation of the Radiation from 
Simple Antennas using the Finite-Difference Time-Domain Method”, IEEE Trans. On Ant. and 
Prop., vol. 38, no. 7, Jul. 1990, pp. 1059-1068.  

Appendix 

 = 120*pi; 
 = 3e+8; 
 Define the antenna dimensions.  It is 1 om) long with an 

% apex angle of 30 degrees.  Add one for referencing. 
nt_length = 15; 

ant_angle = 31; 
% Define boundary edge mbda  

 nominal is the wavelength for a 6.5GHz wave.  The expected bandwidth is  
a_min. 

ta 
nd  

 = 1.0*pi/180;   % cell angle in radians  
 time step 

ax = 151;         % solution space radius 
pace angle 

 radius 
 coaxial input line inner radius 
for the PML region: Npml = # of layers, R0 = desired 

e, sigma_space = conductance of free 

 
 
 

 
 

Matlab Function: FDTD1.m (11/23/04) 
 
% Two dimensiontal, spherical FDTD Simulation of a conical UWB antenna. 
% This simulation uses 2-D versions of the 3-D spherical Maxwell's  
% equations.   The antenna radiation pattern is stepped forward in time, 
% and the electric and magnetic field components are calculated for the 
% propagation of the wave into space.  Excitation waves can either be a CW 
% sine wave or a Gaussian-shaped pulse. 
% 
% R.W. Brocato 
% 
function [Et] = FDTD1(tmax) 
% Initialize standard free space constants 
uo = 4*pi*1e-7; 
o = 1e-9/(36*pi); e

Z
c
% 5dr (1 lambda_n

 Matlab matrix 
a

s.  Rmax occurs at 10(lambda_nominal) where la
%
% 3.1-10.6 GHz, with 3.1 GHz being lambda_max and 10.6 GHz being lambd
% This range is defined by the FCC mask for UWB transmission.  The
% extends from 0 to 90 degrees.  Here, dr = 0.003 m (lambda_min/10), a
% dtheta = 1 degree.  Using dt = 0.2 psec will satisfy Courant's limit for 
% all frequencies. 
dr = 0.003;         % cell radius 
dth
dt = 0.2e-12;       %
Rm
THmax = 91;         % solution s
b = 0.006;          % coaxial input line outer
a = 0.003;          %
% Set up constants 
% reflection coefficient at zero angl
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% space (0 layer), sigmaM_space = magnetic conductance of free space, L=1 

 All equations used are from Berenger's IEEE Trans. on Ant. 
. 1996 paper. 

pace conductivity for a geometric profile 
log(R0)/(2*dr*(g^(Npml)-1)); 

og(g); 
ace/eo;    % impedance matching condition 

 or parabolic profile 
^(L+1)*Npml^L; 

ofile 
l)/(sqrt(g)*log(g)); 

rofile 

sub-components 

e of copper 
mall 

conductivity according  

length) 

        sigma(I,J) = sigma_space; 

% for linear conductivity profile, L=2 for parabolic conductivity profile, 
% for a geometric conductivity, 3-4 lines must be commented and 
% uncommented.
% and Prop., Jan
R0 = 1e-14;                    % select desired reflection 
Npml = 20;                     % select number of layers to use 
L = 2;                         % select conductivity profile 
g = 2;                         % select geometric factor 
   % calculate free space conductivity for a linear or parabolic profile 
sigma_space = - eo*c*log(R0)/(2^(L+2)*dr*Npml^(L+1)); 
   % calculate free s
% sigma_zero = - eo*c*log(g)*
% sigma_space = sigma_zero*(sqrt(g) - 1)/l
sigmaM_space = uo*sigma_sp
   % calculate final conductivity for a linear
sigmaPML(Npml) = sigma_space*(L+1)*2
   % calculate final conductivity for a geometric pr
% sigmaPML(Npml) = sigma_zero*(g-1)*(g^Npm
sigmaMPML(Npml) = uo*sigmaPML(Npml)/eo; 
for I = 1:(Npml-1) 
    sigmaPML(I) = sigmaPML(Npml)*(I/Npml)^L;    % for linear profile 
%    sigmaPML(I) = sigmaPML(Npml)*g^(I-Npml);    % for geometric p
    sigmaMPML(I) = uo*sigmaPML(I)/eo; 
end 
% Initialize the PML region H 
for I = 1:Npml 
    for J = 1:THmax 
        Hpr(I,J) = 0;  
        Hpt(I,J) = 0; 
    end 
end 
% Set up the conducting antenna surface.  The antenna is mad
% with conductivity of 5.8e+7 mhos/m.  Free space is given a s
% electrical conductivity and a matching magnetic 
% to the PML calculations done above.  
sigma_cu = 5.8e+7; 
sigmaM_cu = uo*sigma_cu/eo; 
for I = 1:Rmax 
    for J = 1:THmax 
        if (J == ant_angle) 
            if (I <= ant_
                sigma(I,J) = sigma_cu; 
                sigmaM(I,J) = sigmaM_cu; 
            elseif (I < Rmax-Npml+1) 
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                sigmaM(I,J) = sigmaM_space; 
            else 
                sigma(I,J) = sigmaPML(I + Npml - Rmax); 

,J) = sigmaMPML(I + Npml - Rmax); 

eif (I == ant_length) 
    if (J <= ant_angle) 

) = sigmaM_space; 

Npml+1) 
a_space; 
maM_space; 

pml - Rmax); 
L(I + Npml - Rmax); 

e problem. 
ax 

J >= ant_angle)) 

J) = 0; 

h the Gaussian driving pulse parameters.  Its center is  
e of 50ps and a center 

 
.01; 

 = 0.06; 
 50; 

                sigmaM(I
            end 
        els
        
                sigma(I,J) = sigma_cu; 
                sigmaM(I,J) = sigmaM_cu; 
            else 
                sigma(I,J) = sigma_space; 
                sigmaM(I,J
            end 
        else 
            if (I < Rmax-
                sigma(I,J) = sigm
                sigmaM(I,J) = sig
            else 
                sigma(I,J) = sigmaPML(I + N
                sigmaM(I,J) = sigmaMPM
            end 
        end 
    end 
end 
% To initialize, zero the fields for all of the free nodes in th
for I = 1:Rm
    for J = 1:THmax 
        if ((I >= ant_length) | (
            Er(I,J) = 0; 
            Et(I,J) = 0; 
            Hp(I,
        end 
    end 
end 
% Establis
% 200ps out, it has a decay tim
% frequency of 6.5 GHz. 
tstart = 200e-12; 
tdecay = 50e-12; 
tsample = 183e-12; 
once = 0; 
fc = 6.5e+9;
Vocw = 0
Vouwb
Rs =
Zin = 0; 
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% Set up some constants for the time iterations 

     % g2 = 0.0113 
      % g3 = 7.53 
     % g4 = 5.3e-5 

ctor = 1/(b*log(2)); 
r = 2*pi*b; 

factor = (log(sin(ant_angle*pi/180))-log(1-cos(ant_angle*pi/180)))/log(2); 

step, update the Hphi field everywhere. 
e singularity at the origin, the ground plane points, 
mmetry, or the PML region. 

:(Rmax-Npml) 
:(THmax-1) 

 ant_length) | (J >= ant_angle)) 
in(J*dth)/sin((J-1)*dth); 

 Da = (1-sigmaM(I,J)*g1)/(1+sigmaM(I,J)*g1); 
 Db = g4/(1+sigmaM(I,J)*g1); 

dth); 
     ET1 = (I/(I-1))*Et(I+1,J) - Et(I,J); 

ER1 - ET1); 

e ground plane, outside the PML region 

)/(1+sigmaM(I,J)*g1); 
aM(I,J)*g1); 

 H field at the along the line of symmetry. 
-Npml) 

n, excluding the ground plane 

L(layer)*g1); 

br; 

t = 0; 
g1 = dt/(2*uo);             % g1 = 7.6e-8 
g2 = dt/(2*eo);        
g3 = dt/(dr*eo);      
g4 = dt/(dr*uo);       
sphere_fa
I_facto
volt_
% Begin the time iterations 
while (t < (tmax*dt)) 
    % For the first half time
    % Don't step th
    % the line of sy
    t = t + 0.5*dt; 
    for I = 3
        for J = 2
            if ((I >=
                g5 = s
               
               
                ER1 = (g5*Er(I,J+1)-Er(I,J))/((I-1/2)*
           
                Hp(I,J) = Da*Hp(I,J) + Db*(
            end 
        end 
    end 
    % Compute the H field at th
    J = THmax; 
    for I = 3:(Rmax-Npml) 
        Da = (1-sigmaM(I,J)*g1
        Db = g4/(1+sigm
        ET1 = (I/(I-1))*Et(I+1,J) - Et(I,J); 
        Hp(I,J) = Da*Hp(I,J) - Db*ET1; 
    end 
    % Compute the
    for I = ant_length:(Rmax
        Hp(I,1) = Hp(I,2); 
    end 
    % Update the H field in the PML regio
    layer = 1; 
    for I = (Rmax-Npml+1):Rmax 
        Dar = (1-sigmaMPML(layer)*g1)/(1+sigmaMPM
        Dbr = g4/(1+sigmaMPML(layer)*g1); 
        Dat = Dar; 
        Dbt = D
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        for J = 2:(THmax-1) 
g5 = sin(J*dth)/sin((J-1)*dth); 

max) 

 Et(I,J); 

) - Dbr*ET1; 
Hpt(layer,J) = Dat*Hpt(layer,J) + Dbt*ER1; 

gmaMPML(layer)*g1); 
+sigmaMPML(layer)*g1); 

)*Et(I+1,J) - Et(I,J); 

er,J) = Dar*Hpr(layer,J) - Dbr*ET1; 

 = Hpr(layer,J) + Hpt(layer,J); 

 fields everywhere.  Again, 
e origin or the ground plane points. 

ep the excitation source, either the Gaussian pulse, or the steady 

9) 
 Vocw*cos(2*pi*fc*t);                   % CW source 

b*exp(-((t-tstart)/tdecay)^2)*cos(2*pi*fc*(t-tstart)); 
p(-((t-tstart)/tdecay)^2)*sin(2*pi*fc*(t-tstart)); 

e E fields.  First step the driving sphere... 
ins = 0; 

            
            ER1 = (g5*Er(I,J+1)-Er(I,J))/((I-1/2)*dth); 
            if (I == R
                ET1 = 0; 
            else 
                ET1 = (I/(I-1))*Et(I+1,J) -
            end 
            Hpr(layer,J) = Dar*Hpr(layer,J
            
            Hp(I,J) = Hpr(layer,J) + Hpt(layer,J); 
        end 
        layer = layer + 1; 
    end 
    % Update the H field in the PML region along the ground plane 
    J = THmax; 
    layer = 1; 
    for I = (Rmax-Npml+1):Rmax 
        Dar = (1-sigmaMPML(layer)*g1)/(1+si
        Dbr = g4/(1
        Dat = Dar; 
        if (I == Rmax) 
                ET1 = 0; 
            else 
                ET1 = (I/(I-1)
        end 
        Hpr(lay
        Hpt(layer,J) = Dat*Hpt(layer,J); 
        Hp(I,J)
        layer = layer + 1; 
    end 
    % For the second half timestep, update the E
    % don't step the driver at th
    t = t + 0.5*dt; 
    % St
    % state sinusoidal 6.5GHz driver. 
%    if (t < 1.0e-
%        Vsrc =
%    else 
%        Vsrc = 0; 
%    end 
%   Vsrc = Vouw
    Vsrc = -Vouwb*ex
    % Now update th
    Vin = 0; I
    for J = ant_angle:THmax 
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        Iin = I_factor*sin((J-1/2)*dth)*Hp(3,J); 

e)) 

 
if (J == (THmax - 1)) 

 Vin 

J) = Vdrv*sphere_factor/sin((J-1/2)*dth); 

 step E fields for the free nodes 

1/2)*dth)/sin((J-3/2)*dth); 
(I,J))/(1 + g2*sigma(I,J)); 

I,J) - Hp(I,J-1))/((I-1/2)*dth); 
/2))*Hp(I,J); 

HPHI1; 
(I,J) + Cb*HPHI2; 

ds at the ground plane 

 - g2*sigma(I,J))/(1 + g2*sigma(I,J)); 
 g3/(1 + g2*sigma(I,J)); 

(I,J) = 0; 

along the line of symmetry. 

); 

)*dth); 

        Vdrv = Vsrc - Rs*Iin; 
        if ((t >= tsample) & (J > ant_angl
            Vin = Vin + b*Et(3,J)*dth; 
            Iins = Iins + Iin;
            
                tsample = 1e-6; 
                Iins = Iins/(THmax - ant_angle - 1); 
                exVin =
                exIin = Iin 
                Zin = abs(Vin/Iin) 
            end 
        end 
        Et(3,
    end 
    % Now
    for I = 4:(Rmax-Npml) 
        for J = 2:(THmax-1) 
            if ((I >= ant_length) | (J >= ant_angle)) 
                g6 = sin((J-
                Ca = (1 - g2*sigma
                Cb = g3/(1 + g2*sigma(I,J)); 
                HPHI1 = (g6*Hp(
                HPHI2 = Hp(I-1,J) - ((I-1/2)/(I-3
                Er(I,J) = Ca*Er(I,J) + Cb*
                Et(I,J) = Ca*Et
            end 
        end 
    end 
    % Compute the E fiel
    J = THmax; 
    for I = 4:(Rmax-Npml) 
        Ca = (1
        Cb =
        HPHI2 = Hp(I-1,J) - ((I-1/2)/(I-3/2))*Hp(I,J); 
        Er
        Et(I,J) = Ca*Et(I,J) + Cb*HPHI2; 
    end 
    % Compute the E fields 
    for I = ant_length:(Rmax-Npml) 
        Ca = (1 - g2*sigma(I,1))/(1 + g2*sigma(I,1)
        Cb = g3/(1 + g2*sigma(I,1)); 
        HPHI1 = (Hp(I,2) - Hp(I,1))/((I-1/2
        Er(I,1) = Ca*Er(I,1) + Cb*HPHI1; 
        Et(I,1) = 0; 
    end 
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    % Update the E fields in the PML region, except for the ground plane 
 

Rmax-Npml+1):Rmax 
r J = 2:(THmax-1) 

 - g2*sigmaPML(layer))/(1 + g2*sigmaPML(layer)); 
gmaPML(layer)); 

th); 
(Hp(I-1,J) - ((I-1/2)/(I-3/2))*Hp(I,J)); 

I1; 
Et(I,J) = Car*Et(I,J) + Cbr*HPHI2; 

L region at the ground plane 

Npml+1):Rmax 
r = (1 - g2*sigmaPML(layer))/(1 + g2*sigmaPML(layer)); 

 (Hp(I-1,J) - ((I-1/2)/(I-3/2))*Hp(I,J)); 

 Cbr*HPHI2; 

r coordinates to rectangular coordinates and mirror the 
 of the radiating 

51 + round((I*sin((J-1)*dth))); 

 1 + round((I*cos((J-1)*dth))); 

,y) = Et(I,J); 

ts 

J) = Ecart(I,J); 

    layer = 1;
    for I = (
        fo
            g6 = sin((J-1/2)*dth)/sin((J-3/2)*dth); 
            Car = (1
            Cbr = g3/(1 + g2*si
            Cat = Car; 
            Cbt = Cbr; 
            HPHI1 = (g6*Hp(I,J) - Hp(I,J-1))/((I-1/2)*d
            HPHI2 = 
            Er(I,J) = Cat*Er(I,J) + Cbt*HPH
            
        end 
        layer = layer + 1; 
    end 
    % Calculate the E field in the PM
    layer = 1; 
    J = THmax; 
    for I = (Rmax-
        Ca
        Cbr = g3/(1 + g2*sigmaPML(layer)); 
        HPHI2 =
        Er(I,J) = 0; 
        Et(I,J) = Car*Et(I,J) +
        layer = layer + 1; 
    end 
end 
% Plot the results 
% Convert the pola
% antenna simulation data to show both +x and -x views
% field. 
for I = 1:Rmax 
    for J = 1:THmax-1 
        x = 1
        x2 = 303 - x; 
        y =
        Ecart(x,y) = Et(I,J); 
        Ecart(x2
    end 
end 
% Load a new Cartesian matrix for interpolation of missing elemen
for I = 1:(2*Rmax-1) 
    for J = 1:Rmax 
        EcartNew(I,
    end 
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end 
% Interpolate the missing elements in the Cartesian matrix 

 = 2; Imax = 2*Rmax - 2; Jmin = 2; Jmax = Rmax - 1; 

) 
empLo = I - 1; 

= I + 1; 
tempLo,J) == 0) & (ItempLo > 1)) 

 (ItempHi < 2*Rmax -1)) 
Hi + 1; 

M = Ecart(ItempLo,J); 
    N = Ecart(ItempHi,J); 

 0) 

else 
        temp1 = sign(M+N)*sqrt(abs(M*N)); 

J + 1; 
I,JtempLo) == 0) & (JtempLo > 1)) 

pHi) == 0) & (JtempHi < Rmax)) 

Ecart(I,JtempLo); 

p2 = N; 

(M+N)*sqrt(abs(M*N)); 

 
artNew(I,J) = temp2; 

artNew(I,J) = temp1; 

 sign(temp1+temp2)*sqrt(abs(temp1*temp2)); 

Imin
for I = Imin:Imax 
    for J = Jmin:Jmax 
        if ((Ecart(I,J) == 0) & (Rmax*cos((I-Rmax)*dth*91/151) + 25 >= J)
            It
            ItempHi 
            while ((Ecart(I
                ItempLo = ItempLo - 1; 
            end 
            while ((Ecart(ItempHi,J) == 0) &
                ItempHi = Itemp
            end 
            
        
            if (M == 0) 
                temp1 = N; 
            elseif (N ==
                temp1 = M; 
            
        
            end 
            JtempLo = J - 1; 
            JtempHi = 
            while ((Ecart(
                JtempLo = JtempLo - 1; 
            end 
            while ((Ecart(I,Jtem
                JtempHi = JtempHi + 1; 
            end 
            M = 
            N = Ecart(I,JtempHi); 
            if (M == 0) 
                tem
            elseif (N == 0) 
                temp2 = M; 
            else 
                temp2 = sign
            end 
            if (temp1 == 0)
                Ec
            elseif (temp2 == 0) 
                Ec
            else 
                EcartNew(I,J) =
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            end 
        end 
    end 
    EcartNew(1,151) = 1.2;         % bogus points added to force scaling 

n the final plot 

w(I,J)) 
bel('X-axis cm') 

a V/m') 
) 

of Cone Antenna at 6.5GHz: UWB Driver') 

    EcartNew(2,151) = -1.0;        % i
end  
I = 1:301; 
J = 1:151; 
x(I) = I; 
y(J) = J; 
surfl(y(J), x(I), EcartNe
xlabel('Y-axis cm'), yla
zlabel('Ethet
% title('FDTD of Cone Antenna at 6.5GHz: CW Driver'
title('FDTD 
shading interp 
colormap pink 
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Matlab Function: Vsrc.m (11/3/04) 
 

 This function models the UWB Gaussian-shaped voltage pulse to drive  
 a UWB antenna. 
 It accepts a max. timestep "Nmax" 
 It outputs an array of values.  It should be called once, and its 
 matrix output results should be referenced. 
 
 Robert Brocato 
 11/3/04 
nction [Vout] = Vsrc(Nmax, dt) 
 Set the time step at 1psec 

t = 1e-12; 
 Take pulse center time (nstart) = 200psec 

start = 200; 
 The 1/e time (ndecay) is taken as 10dt 

decay = 50; 
 Pulse center frequency (fc) is 6.5GHz, center of FCC 3.1-10.6 GHz range 
 = 6.5*10^9; 
 Pulse max. amplitude (Vo) is taken as 1 volt 
o = 1.0; 

for n = 1:Nmax 
    Vout(n) = Vo*exp(-((n-nstart)/ndecay)^2)*co t); 

p(-((n-200)/50)^2)*sin(2*pi*fc*(n-200)dt)') 

/50)^2)*cos(2*pi*fc*(n-200)dt)') 

%
%
%
%
%
%
%
%
fu
%
d
%
n
%
n
%
fc
%
V

s(2*pi*fc*(n-nstart)*d
end 
plot(Vout) 
% title('Gaussian-shaped pulse: -Vo*ex
xlabel('Time (psec)'); 
title('Gaussian-shaped pulse: Vo*exp(-((n-200)
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Matlab Function: IdealCone.m (10/28/04) 
 
% Closed form field solution for an infinite conical antenna 
% 

 R.W. Brocato 
 
 The closed form solution for the infinite conical antenna is taken from 
 the book Fields and Waves by Ramo, Whinnery, and Van Duzer, pp. 462-465. 
 
nction [Et] = IdealCone() 
 Use the same discretization parameters (dr, dth, dt, ranges, etc.) as are 
 used by the FDTD simulation. 

r = 0.003; 
th = 1; 
t = 5e-12; 
 = 377; 
 = 3e+8; 
 Range extends to 15 median wavelengths in R and from 0-90 degrees in 
 theta.  The angle of the infinite cone antenna is the same as for the one 
 used in the FDTD simulation. 
max = 151; 

THmax = 91; 
one_angle = 31; 

dr; 
ave parameters, frequency (fo), amplitude (Eo), 

avenumber (k), etc. 

 6.5e+9;                    % 6.5GHz 
36.1 

ne_angle; 
 1:(THmax-1) 

 cone_angle) 
ve = cos(2*pi*fo*t - k*r); 
i,j) = (1/((r)*sin((theta-1)*pi/180)))*(Eo*wave); 

Et(i,j)/Z; 
eta + dth; 

%
%
%
%
%
fu
%
%
d
d
d
Z
c
%
%
%
R

c
theta = cone_angle; 
r = 
% Initialize the w
% w
Vo = 0.033; 
Eo = Vo/(2*log(cot((pi/180)*(cone_angle-1)/2))); 
fo =
k = 2*pi*fo/c;                  % 1
t = 0; 
for i = 1:Rmax 
    theta = co
    for j =
        if (j >=
            wa
            Et(
        else 
            Et(i,j) = 0.0; 
        end 
        Hp(i,j) = 
        theta = th
    end 
    r = r + dr; 
end 
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% Plot the results 
% Convert the polar coordinates to rectangular coordinates and mirror the 

ulation data to show both +x and -x views of the radiating 

plish the polar to 

 1:Rmax 
ax-1 

sin((j-1)*dth*pi/180))/5); 

(j-1)*dth*pi/180))/5); 

1.5; 
, Ecart(i,j)) 

l('Y-axis cm'), ylabel('X-axis cm') 
') 

 pink 

% antenna sim
% field. 
% The solution space must be compressed by 5x to accom
% rectangular conversion. 
for i =
    for j = 1:THm
        x = 32 + round((i*
        x2 = 63 - x; 
        y = 1 + round((i*cos(
        Ecart(x,y) = Et(i,j); 
        Ecart(x2,y) = Et(i,j); 
    end 
end 
i = 1:62; 
j = 1:31; 
x(i) = i*1.5; 
y(j) = j*
surfl(y(j), x(i)
xlabe
zlabel('Etheta V/m
title('Infinite 30 Degree Cone Antenna at 6.5GHz: Closed Form Solution') 
shading interp 
colormap
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Matlab Function: ConeGeom.m (10/10/04) 

 This function plots the physical outline of a conical antenna. 
 
 R.W. Brocato 
nction [Z] = ConeGeom() 

nt_angle = 31; 
 = 15; 
a = cos((ant_angle - 1)*pi/180); 
max = R*Ha; 
 = 60; 
prev = 0; 
r i = 1:N+1 

  for j = 1:N+1 
      if (Zprev < Zmax) 
          Z(i,j) = Ha*R*(i-1)/N; 
          term = R*(i-1)/N; 
          Zprev = term; 
      else 
          Z(i,j) = R*cos(pi/2*(2*(i-1)/N - 1)- pi/2); 
          term = (1/Ha)*R*cos(pi/2*(2*(i-1)/N - 1)); 

        end 
      arg = 2*pi*(j-1)/N; 

   X(i,j) = term*cos(arg + pi); 

n 

 
%
%
%
fu
a
R
H
Z
N
Z
fo
  
  
  
  
  
  
  
  

  
        Y(i,j) = term*cos(arg + pi/2); 
     
    end 
end 
surf(X,Y,Z) 
hidden o
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 49



Matlab Function: Pplot.m (11/11/04) 

lar plot to show antenna far field radiation pattern. 

 R.W. Brocato 
 
 This function accepts the input matrix from a simulation run of FDTD1 and 
 generates a 2-D polar plot.  The run of FDTD1 should be for 8000 
 timesteps at dt = 0.2psec. 
 
nction [] = Pplot(Ft) 
 Define some constants: Jmax is the maximum angle to view up to, Rview is 
 the far field radius value at which to plot the field. 
ax = 91; 

view = 121; 
tep = pi/180; 
ax = pi/2; 

= tstep:tstep:tmax+tstep; 
 Manually enter the radiation field data from the Liu and Grimes paper. 
(1:10) = [0 0.02 0.03 0.04 0.06 0.07 0.08 0.09 0.10 0.11]; 
(11:21) = [0.12 0.13 0.15 0.16 0.18 0.19 0.2 0.21 0.23 0.24 0.25]; 

B(22:33) = [0.26 0.27 0.2
(34:45) = [0.41 0.42 0.44 0.45 0.46 0.48 0.49 0.5 0.52 0.53 0.55 0.59]; 

 0.75]; 
8:69) = [0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.85 0.86 0.87 0.88 0.88]; 

0.9 0.91 0.91 0.92 0.93 0.94 0.94 0.95 0.96 0.96 0.97]; 
2:91) = [0.97 0.98 0.98 0.99 0.99 0.99 0.99 1.00 1.00 1.00]; 

vs. the paper results 
olar(t, Ft(Rview,1:Jmax),'r') 

1:Jmax); 

*Jmax) = -t; 
 

 
% Create a po
% 
%
%
%
%
%
%
fu
%
%
Jm
R
ts
tm
t 
%
B
B

9 0.3 0.31 0.32 0.33 0.35 0.36 0.37 0.38 0.4]; 
B
B(46:57) = [0.60 0.62 0.63 0.65 0.66 0.67 0.69 0.7 0.71 0.73 0.74
B(5
B(70:81) = [0.89 
B(8
% Scale the data in amplitude 
B = B * 0.043; 
% Plot the simulation results 
% p
C(1:Jmax) = Ft(Rview, 
C(Jmax+1:2*Jmax) = B; 
t2(1:Jmax) = t; 
t2(Jmax+1:2
polar(t2, C, 'r')
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Matlab Function: Film.m (11/25/04) 
 
% Film.m : Creates a movie of the conical antenna FDTD simulation by 

1 repeatedly with different time intervals.  Call this 
ovie file, m, for 

nction, open the Matlab data file 
ads the workspace with the struct array, m.  Then 

 
 
nction [m] = Film() 
ount = 0; 
r I = 1:23 

  if (I < 7) 
      tinc = 250; 
  else 
      tinc = 500; 
  end 
  tcount = tcount + tinc; 

    FDTD1(tcount); 
  view(-90,60); 

% callinjg FDTD
% routine by m = film; if it is desired to save the m
% replay later. 
% To execute the results of this fu
% GaussianPulse.  This lo
% run movie(m,10,3); in the command window. 
% 
% R.W. Brocato
%
fu
tc
fo
  
  
  
  
  
  

  
    axis([0 200 0 300 -1 2]); 
    m(I) = getframe; 
end 
cla 
movie(m,10,3) 
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Reference [16]: S.S. Sandler and R.W.P. King, "Compact Conical Antenna for Wide-Band Coverage",
                        IEEE Trans. on Ant. and Prop.,  Vol. 42, No. 3, Mar. 1994, pp. 436-439.

Zin 84.972=

Zin 84.063 12.396i−=

Zin Zc
1 β_α−

1 β_α+
⋅:=

β_α 0.037− 0.073i+=β_α e i− 2⋅ ka⋅ 1 iS+( )
iS 1−

⋅:=

S 0.157− 0.964i+=S
60
Zc n

2 n⋅ 1+

n n 1+( )⋅
Leg n cos θ0( ),( )2⎛
⎝

⎞
⎠⋅ ζ n ka,( )⋅⎡⎢

⎣
⎤⎥
⎦∑⎡⎢

⎢⎣

⎤⎥
⎥⎦

:=

n 1 3, 17..:=

ζ n ka,( )
H2 n ka,( )

H2 n 1− ka,( )
n
ka

H2 n ka,( )⋅−

:=

Calculate the impedance of the finite cone antenna

Zc 79.017=Zc 60 ln cot
θ0
2

⎛
⎜
⎝

⎞

⎠

⎛
⎜
⎝

⎞

⎠
⋅:=

Calculate the impedance of an infinite cone antenna

ka 6.126=ka k a⋅:=k
2 π⋅

λ
:=

wavelength in mmλ 46.154=λ
3 1011
⋅

fc
:=

center frequency of interestfc 6.5 109
⋅:=

height of the antenna in mma 45:=

semi-angle of the antenna in radians θ0 30
π

180
⋅:=

a Driving Point Impedance [16]

athCAD Worksheet for Calculation ofM

Prepare some general antenna parameters

Conical Antenn
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